Disrupted corticosterone pulsatile patterns attenuate responsiveness to glucocorticoid signaling in rat brain.

نویسندگان

  • R Angela Sarabdjitsingh
  • Sheena Isenia
  • Annelies Polman
  • Jona Mijalkovic
  • Servane Lachize
  • Nicole Datson
  • E Ron de Kloet
  • Onno C Meijer
چکیده

Chronically elevated circulating glucocorticoid levels are although to enhance vulnerability to psychopathology. Here we hypothesized that such sustained glucocorticoid levels, disturbing corticosterone pulsatility, attenuate glucocorticoid receptor signaling and target gene responsiveness to an acute challenge in the rat brain. Rats were implanted with vehicle or 40 or 100% corticosterone pellets known to flatten ultradian and circadian rhythmicity while maintaining daily average levels or mimic pathological conditions. Additionally, recovery from constant exposure was studied in groups that had the pellet removed 24 h prior to the challenge. Molecular markers for receptor responsiveness (receptor levels, nuclear translocation, promoter occupancy, and target gene expression) to an acute challenge mimicking the stress response (3 mg/kg ip) were studied in the hippocampal area. Implantation of 40 and 100% corticosterone pellets dose-dependently down-regulated glucocorticoid receptor and attenuated mineralocorticoid receptor and glucocorticoid receptor translocation to the acute challenge. Interestingly, whereas target gene Gilz expression to the challenge was already attenuated by tonic daily average levels (40%), Sgk-1 was affected only after constant high corticosterone exposure (100%), indicating altered receptor responsiveness due to treatment. Washout of 100% corticosterone recovered all molecular markers (partial), whereas removal of the 40% corticosterone pellet still attenuated responsiveness to the challenge. We propose that corticosteroid pulsatility is crucial in maintaining normal responsiveness to glucocorticoids. Whereas the results with 100% corticosterone are likely attributed to receptor saturation, subtle changes in the pattern of exposure (40%) induces changes at least as severe for glucocorticoid signaling as overt hypercorticism, suggesting an underlying mechanism sensitive to the pattern of hormone exposure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultradian glucocorticoid exposure directs gene-dependent and tissue-specific mRNA expression patterns in vivo

In this paper we report differential decoding of the ultradian corticosterone signal by glucocorticoid target tissues. Pulsatile corticosterone replacement in adrenalectomised rats resulted in different dynamics of Sgk1 mRNA production, with a distinct pulsatile mRNA induction profile observed in the pituitary in contrast to a non-pulsatile induction in the prefrontal cortex (PFC). We further r...

متن کامل

Oral Communications 1P C1 Hippocampal free corticosterone levels show an ultradian rhythm in Wistar rats

Plasma corticosterone levels in rodents are characterised by a diurnal rhythm with low levels in the morning and markedly higher levels towards the evening, the activity phase of these nocturnal animals. Apart from diurnal changes, plasma corticosterone levels also display an ultradian rhythm [1], possibly resulting from its pulsatile secretion by the adrenal cortex [2]. At present it is unknow...

متن کامل

Corticosterone levels in the brain show a distinct ultradian rhythm but a delayed response to forced swim stress.

Circulating corticosterone levels show an ultradian rhythm resulting from the pulsatile release of glucocorticoid hormone by the adrenal cortex. Because the pattern of hormone availability to corticosteroid receptors is of functional significance, it is important to determine whether there is also a pulsatile pattern of corticosterone concentration within target tissues such as the brain. Furth...

متن کامل

Hippocampal Fast Glutamatergic Transmission Is Transiently Regulated by Corticosterone Pulsatility

In recent years it has become clear that corticosteroid hormones (such as corticosterone) are released in ultradian pulses as a natural consequence of pituitary-adrenal interactions. All organs, including the brain, are thus exposed to pulsatile changes in corticosteroid hormone level, important to ensure full genomic responsiveness to stress-induced surges. However, corticosterone also changes...

متن کامل

Glucocorticoids rapidly inhibit oxytocin-stimulated adrenocorticotropin release from rat anterior pituitary cells, without modifying intracellular calcium transients.

Glucocorticoid hormones suppress the secretion of ACTH evoked by secretagogues such as CRF and arginine vasopressin. In this study, we investigated the effects of glucocorticoids on ACTH release induced by oxytocin (OT) and on intracellular free calcium ion levels in corticotropes prepared from the adenohypophyses of female Wistar rats. Pulsatile additions of physiological concentration of OT (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Endocrinology

دوره 151 3  شماره 

صفحات  -

تاریخ انتشار 2010